4.5 Article

Multipole solitary wave solutions of the higher-order nonlinear Schrodinger equation with quintic non-Kerr terms

Journal

OPTICS COMMUNICATIONS
Volume 309, Issue -, Pages 71-79

Publisher

ELSEVIER
DOI: 10.1016/j.optcom.2013.06.039

Keywords

Nonlinear Schrodinger equation; Solitary wave solution; Complex amplitude ansatz

Categories

Ask authors/readers for more resources

We consider a high-order nonlinear Schrodinger (HNLS) equation with third- and fourth-order dispersions, quintic non-Kerr terms, self steepening, and self-frequency-shift effects. The model applies to the description of ultrashort optical pulse propagation in highly nonlinear media. We propose a complex envelope function ansatz composed of single bright, single dark and the product of bright and dark solitary waves that allows us to obtain analytically different shapes of solitary wave solutions. Parametric conditions for the existence and uniqueness of such solitary waves are presented. The solutions comprise fundamental solitons, kink and anti-kink solitons, W-shaped, dipole, tripole, and fifth-order solitons. In addition, we found a new type of solitary wave solution that takes the shape of N, illustrating the potentially rich set of solitary wave solutions of the HNLS equation. Finally, the stability of the solutions is checked by direct numerical simulation. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available