4.5 Article

Numerical test of the theory of pseudo-diffusive transmission at the Dirac point of a photonic band structure

Journal

OPTICS COMMUNICATIONS
Volume 281, Issue 20, Pages 5267-5270

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optcom.2008.07.017

Keywords

Nanophotonics; Photonic crystals; Wave propagation

Categories

Ask authors/readers for more resources

It has recently been predicted that a conical singularity (=Dirac point) in the band structure of a photonic crystal produces an unusual 1/L scaling of the photon flux transmitted through a slab of thickness L. This inverse-linear scaling is unusual, because it is characteristic of radiative transport via diffusion modes through a disordered medium - while here it appears for propagation of Bloch modes in an ideal crystal without any disorder. We present a quantitative numerical test of the predicted scaling, by calculating the scattering of transverse-electric (TE) modes by a two-dimensional triangular lattice of dielectric rods in air. We verify the 1/L scaling and show that the slope differs by less than 10% from the value predicted for maximal coupling of the Bloch modes in the photonic crystal to the plane waves in free space. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available