4.2 Article

Trace detection of light elements by laser-induced breakdown spectroscopy (LIBS): Applications to non-conducting materials

Journal

OPTICS AND SPECTROSCOPY
Volume 115, Issue 4, Pages 574-590

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S0030400X13100123

Keywords

-

Ask authors/readers for more resources

The existence as well as concentration of light (low-atomic number) elements is directly related to some of the most important properties of almost all materials. Thus, the development of a direct, fast, and sensitive spectroscopic method for the analytical quantification of these elements is considered an important continuing challenge in many fields. In this report, results obtained from previous as well as most recent studies regarding trace detection of light elements in non-conducting materials by laser-induced breakdown spectroscopy (LIBS) technique are reviewed for the first time. Firstly, we introduce investigations performed in the far- and vacuum-UV as well as UV-visible-NIR spectral domains, and cover many non-conducting materials including gases, aerosols, soil, cement, and selected organic compounds. The report also demonstrates important analytical results for the elements lithium, beryllium, boron, carbon, fluorine, phosphorus, sulfur, and chlorine. In addition, key characterization information relating to a specific element in a given matrix and state is summarized in such a way that relevant resources can easily be traced. Furthermore, in order to facilitate tracking down the evolution of the technique for a particular material category, a chronological order has been devised. In the second part of the review, the latest developments and advances in instrumentation and methodologies of the LIBS technique, particularly in the realm of light elements detection, are discussed. The sensitive detection of light elements in the UV-VIS-NIR is still unsatisfactory, and more work is needed in order to achieve better analytical performance in terms of precision, accuracy and limits of detection. The author anticipates that significant sensitivity improvements should be realized by combining LIBS, employing femtosecond laser pulses, with other diagnostic techniques based on probing the plasma via diode lasers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available