4.6 Article

CdZnS thin films sublimated by closed space using mechanical mixing: A new approach

Journal

OPTICAL MATERIALS
Volume 36, Issue 8, Pages 1449-1453

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optmat.2013.09.003

Keywords

Angle resolved optical properties; Coalescence; Crystal structure; CZS thin films; Grain growth

Funding

  1. Higher education commission (HEC) Pakistan [20-1187/RD/ 09]
  2. COMSATS Institute of Information Technology (CIIT), Islamabad

Ask authors/readers for more resources

Cadmium sulfide (CdS) is a prominent material for its tunable band gap used as a window layer in II-VI semiconductor solar cells. The light trapping capability of window layer is one of the powerful tools to enhance the efficiency of the cell. CdS and zinc (Zn) powders were mixed mechanically with different weight percents to make CdZnS (CZS) powder. CZS was deposited onto an ultrasonically cleaned glass substrate using close spaced sublimation (CSS) technique. CZS as-deposited thin films were characterized for structural, surface morphology with energy dispersive X-rays (EDX) and optical properties for the use of window layer in CdS/CdTe based solar cells. The different Zn concentrations in CZS played a vital role on crystallite size in structural analysis and optical properties e.g. transmission, absorption coefficient and energy band gap, etc. The crystallite size of as-deposited CZS thin films were increased as Zn concentration was increased up to certain value. The energy band gap varies from 2.42 eV to 2.57 eV for as-deposited CZS thin films with increasing Zn concentrations and surface morphology changes also. These changes were occurred due to zinc diffusion in CdS thin films. An angle resolved transmission data was taken to check the behavior of CdS and CZS thin film at different angles. A comparative study was carried out between CdS thin films and CZS thin films for the use of good window layer material. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available