4.3 Article

Momentum predictability and heat accumulation in laser-based space debris removal

Journal

OPTICAL ENGINEERING
Volume 58, Issue 1, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.OE.58.1.011004

Keywords

lasers ablation; space debris removal; momentum generation; heat accumulation; Monte Carlo simulation

Categories

Ask authors/readers for more resources

Small space debris objects of even a few centimeters can cause severe damage to satellites. Powerful lasers are often proposed for pushing small debris by laser-ablative recoil toward an orbit where atmospheric burn-up yields their remediation. We analyze whether laser-ablative momentum generation is safe and reliable concerning predictability of momentum and accumulation of heat at the target. With hydrodynamic simulations on laser ablation of aluminum as the prevalent debris material, we study laser parameter dependencies of thermomechanical coupling. The results serve as configuration for raytracing-based Monte Carlo simulations on imparted momentum and heat of randomly shaped fragments within a Gaussian laser spot. Orbit modification and heating are analyzed exemplarily under repetitive laser irradiation. Short wavelengths are advantageous, yielding momentum coupling up to similar to 40 mNs/kJ, and thermal coupling can be minimized to 7% of the pulse energy using short-laser pulses. Random target orientation yields a momentum uncertainty of 86% and the thrust angle exhibits 40% scatter around 45 deg. Moreover, laser pointing errors at least redouble the uncertainty in momentum prediction. Due to heat accumulation of a few Kelvin per pulse, their number is restricted to allow for intermediate cooldown. Momentum scatter requires a sound collision analysis for conceivable trajectory modifications. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available