4.5 Article

Matrine induction of reactive oxygen species activates p38 leading to caspase-dependent cell apoptosis in non-small cell lung cancer cells

Journal

ONCOLOGY REPORTS
Volume 30, Issue 5, Pages 2529-2535

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/or.2013.2727

Keywords

matrine; caspase-dependent apoptosis; p38; reactive oxygen species; non-small cell lung cancer

Categories

Funding

  1. Jiangsu University development foundation for clinical medicine [JLY20120171]

Ask authors/readers for more resources

Non-small cell lung carcinoma (NSCLC) is one of the most refractory cancers in the clinic; it is insensitive to chemotherapy and is usually excised. However, screening natural compounds from herbs is also considered a possible method for its therapy. In the present study, we investigated whether matrine, a natural compound isolated from Sophora flavescens Ait. and exerting an inhibitory effect on lung cancer cells, also indicates inhibition on NSCLC cells and elucidated its molecular mechanism. Firstly, it is confirmed that matrine induces apoptosis of human NSCLC cells with anti-apoptotic factors inhibited and dependent on caspase activity. In addition, we found that matrine increases the phosphorylation of p38 but not its total protein, and inhibition of the p38 pathway with SB202190 partially prevents matrine-induced apoptosis. Furthermore, matrine generates reactive oxygen species (ROS) in a dose-and time-dependent manner, which is reversed by pretreatment with N-acetyl-L-cysteine (NAC). Additionally, inhibition of cell proliferation and increase of phosphorylation of p38 was also partially reversed by NAC. Collectively, matrine activates p38 pathway leading to a caspase-dependent apoptosis by inducing generation of ROS in NSCLC cells and may be a potential chemical for NSCLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available