4.8 Article

Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK

Journal

ONCOGENE
Volume 32, Issue 41, Pages 4932-4940

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2012.512

Keywords

anoikis; breast cancer; unfolded protein response

Funding

  1. NIH-NCI shared resources [5R24CA095823-04]
  2. NSF Major Research Instrumentation grant [DBI-9724504]
  3. NIH [1 S10RR0 9145-01, RO1 CA126792, CA126792-S1, P01 CA104838]
  4. Samuel Waxman Cancer Research Foundation Tumor Dormancy Program
  5. NIH/National Cancer Institute [CA109182, CA163131]
  6. NIEHS [ES017146]
  7. NYSTEM
  8. Leukemia and Lymphoma Scholar

Ask authors/readers for more resources

Adhesion to the extracellular matrix (ECM) is critical for epithelial tissue homeostasis and function. ECM detachment induces metabolic stress and programmed cell death via anoikis. ECM-detached mammary epithelial cells are able to rapidly activate autophagy allowing for survival and an opportunity for re-attachment. However, the mechanisms controlling detachment-induced autophagy remain unclear. Here we uncover that the kinase PERK rapidly promotes autophagy in ECM-detached cells by activating AMP-activated protein kinase (AMPK), resulting in downstream inhibition of mTORC1-p70(S6K) signaling. LKB1 and TSC2, but not TSC1, are required for PERK-mediated inhibition of mammalian target of rapamycinin MCF10A cells and mouse embryo fibroblast cells. Importantly, this pathway shows fast kinetics, is transcription-independent and is exclusively activated during ECM detachment, but not by canonical endoplasmic reticulum stressors. Moreover, enforced PERK or AMPK activation upregulates autophagy and causes luminal filling during acinar morphogenesis by perpetuating a population of surviving autophagic luminal cells that resist anoikis. Hence, we identify a novel pathway in which suspension-activated PERK promotes the activation of LKB1, AMPK and TSC2, leading to the rapid induction of detachment-induced autophagy. We propose that increased autophagy, secondary to persistent PERK and LKB1-AMPK signaling, can robustly protect cells from anoikis and promote luminal filling during early carcinoma progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available