4.8 Article

Stabilization of HIF-2α through redox regulation of mTORC2 activation and initiation of mRNA translation

Journal

ONCOGENE
Volume 32, Issue 26, Pages 3147-3155

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2012.333

Keywords

mTOR; Nox oxidase; Rictor; p22(phox); HIF-2 alpha; renal cancer

Funding

  1. Veterans Administration
  2. NIH [R01 NCI CA131272, K08 CA138774]
  3. Voelcker Fund Young Investigator Award
  4. Cancer Center Support Grant, National Cancer Institute [5 P30 CA054174-18]

Ask authors/readers for more resources

Hypoxia inducible factor-2 alpha (HIF-2 alpha) has a critical role in renal tumorigenesis. HIF-2 alpha is stabilized in von Hippel-Lindau (VHL)-deficient renal cell carcinoma through mechanisms that require ongoing mRNA translation. Mammalian target of rapamycin (mTOR) functions in two distinct complexes: Raptor-associated mTORC1 and Rictor-associated mTORC2. Rictor-associated mTORC2 complex has been linked to maintaining HIF-2 alpha protein in the absence of VHL; however, the mechanisms remain to be elucidated. Although Raptor-associated mTORC1 is a known key upstream regulator of mRNA translation, initiation and elongation, the role of mTORC2 in regulating mRNA translation is not clear. Complex assembly of the mRNA cap protein, eukaryotic translation initiation factor 4 (eIF4)E, with activators (eIF4 gamma (eIF4G)) and inhibitors (eIF4E-binding protein 1 (4E-BP1)) are rate-limiting determinants of mRNA translation. Our laboratory has previously demonstrated that reactive oxygen species, mediated by p22(phox)-based Nox oxidases, are enhanced in VHL-deficient cells and have a role in the activation of Akt on S473, a site phosphorylated by the mTORC2 complex. In this study, we examined the role of Rictor-dependent regulation of HIF-2 alpha through eIF4E-dependent mRNA translation and examined the effects of p22(phox)-based Nox oxidases on TORC2 regulation. We demonstrate for the first time that mTORC2 complex stability and activation is redox sensitive, and further defined a novel role for p22(phox)-based Nox oxidases in eIF4E-dependent mRNA translation through mTORC2. Furthermore, we provide the first evidence that silencing of p22(phox) reduces HIF-2 alpha-dependent gene targeting in vitro and tumor formation in vivo. The clinical relevance of these studies is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available