4.8 Article

Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas

Journal

ONCOGENE
Volume 31, Issue 18, Pages 2270-2282

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2011.405

Keywords

osteosarcoma; wnt signaling; cancer stem cell; mesenchymal tumors; differentiation; sarcosphere

Funding

  1. PHS from the NIAMS [AR051358]
  2. NIDCR [DE013745]
  3. NCI
  4. Children's Cancer Research Fund
  5. St Baldrick's Foundation

Ask authors/readers for more resources

Tumors are thought to be sustained by a reservoir of self-renewing cells, termed tumor-initiating cells or cancer stem cells. Osteosarcomas are high-grade sarcomas derived from osteoblast progenitor cells and are the most common pediatric bone malignancy. In this report we show that the stem cell transcription factor Sox2 is highly expressed in human and murine osteosarcoma (mOS) cell lines as well as in the tumor samples. Osteosarcoma cells have increased ability to grow in suspension as osteospheres, that are greatly enriched in expression of Sox2 and the stem cell marker, Sca-1. Depletion of Sox2 by short-hairpin RNAs in independent mOS-derived cells drastically reduces their transformed properties in vitro and their ability to form tumors. Sox2-depleted osteosarcoma cells can no longer form osteospheres and differentiate into mature osteoblasts. Concomitantly, they exhibit decreased Sca-1 expression and upregulation of the Wnt signaling pathway. Thus, despite other mutations, these cells maintain a requirement for Sox2 for tumorigenicity. Our data indicate that Sox2 is required for osteosarcoma cell self renewal, and that Sox2 antagonizes the pro-differentiation Wnt pathway that can in turn reduce Sox2 expression. These studies define Sox2 as a survival factor and a novel biomarker of self renewal in osteosarcomas, and support a tumor suppressive role for the Wnt pathway in tumors of mesenchymal origin. Our findings could provide the basis for novel therapeutic strategies based on inhibiting Sox2 or enhancing Wnt signaling for the treatment of osteosarcomas. Oncogene (2012) 31, 2270-2282; doi:10.1038/onc.2011.405; published online 19 September 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available