4.8 Article

Vimentin is a novel AKT1 target mediating motility and invasion

Journal

ONCOGENE
Volume 30, Issue 4, Pages 457-470

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2010.421

Keywords

soft-tissue sarcoma; AKT1; vimentin; phosphorylation; migration/invasion

Funding

  1. NIH/NHLBI [NO1-HV-28184]
  2. NIH [CA138345]
  3. RTOG
  4. Welch Foundation Endowment [L-AU-0002]
  5. NCI Cancer Center [16672]
  6. NIH/NCI [CA138345]
  7. DIVISION OF HEART AND VASCULAR DISEASES [N01HV028184] Funding Source: NIH RePORTER
  8. NATIONAL CANCER INSTITUTE [R01CA138345] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The PI3K/AKT signaling pathway is aberrant in a wide variety of cancers. Downstream effectors of AKT are involved in survival, growth and metabolic-related pathways. In contrast, contradictory data relating to AKT effects on cell motility and invasion, crucial prometastatic processes, have been reported pointing to a potential cell type and isoform type-specific AKT-driven function. By implication, study of AKT signaling should optimally be conducted in an appropriate intracellular environment. Prognosis in soft-tissue sarcoma (STS), the aggressive malignancies of mesenchymal origin, is poor, reflecting our modest ability to control metastasis, an effort hampered by lack of insight into molecular mechanisms driving STS progression and dissemination. We examined the impact of the cancer progression-relevant AKT pathway on the mesenchymal tumor cell internal milieu. We demonstrate that AKT1 activation induces STS cell motility and invasiveness at least partially through a novel interaction with the intermediate filament vimentin (Vim). The binding of AKT (tail region) to Vim (head region) results in Vim Ser39 phosphorylation enhancing the ability of Vim to induce motility and invasion while protecting Vim from caspase-induced proteolysis. Moreover, vimentin phosphorylation was shown to enhance tumor and metastasis growth in vivo. Insights into this mesenchymal-related molecular mechanism may facilitate the development of critically lacking therapeutic options for these devastating malignancies. Oncogene (2011) 30, 457-470; doi: 10.1038/onc.2010.421; published online 20 September 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available