4.8 Article

Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors

Journal

ONCOGENE
Volume 27, Issue 25, Pages 3508-3515

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1211019

Keywords

SHP-2; gain-of-function mutation; NIH3T3; solid tumor; oncogenic RAS

Ask authors/readers for more resources

SHP-2 protein tyrosine phosphatase plays an important role in activation of the RAS-dependent signaling. Gain-of-function mutations in the PTPN11 gene, which encodes SHP-2, have been found in the leukemia-prone developmental disorder Noonan syndrome as well as sporadic childhood leukemias, indicating that SHP-2 is a bona. de human oncoprotein. However, the role of SHP-2 mutations in non-hematological malignancies remains obscure. Here, we screened for PTPN11 mutations in primary solid tumors and identified a 1520C > A mutation that causes threonine-507 to lysine (T507K) substitution in the phosphatase domain of SHP-2 in a case of hepatocellular carcinoma. T507K SHP-2 exhibited altered substrate specificity with slightly elevated basal phosphatase activity. Upon expression in NIH3T3 cells, T507K SHP-2 induced transformed foci, which was not observed with wild type, Noonan-specific or leukemia-specific SHP-2. Furthermore, NIH3T3 cells transformed by T507K SHP-2 showed anchorage-independent growth and developed tumors in nude mice. These results indicate that quantitative and/or qualitative alteration in phosphatase activity determines the transforming potential as well as target cell/tissue spectrum of individual SHP-2 mutants as oncoproteins. Although rare in solid tumors, the identified T507K SHP-2 represents a distinct class of SHP-2 mutants with oncogenic RAS-like transforming activity, which could contribute to the development of solid tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available