4.5 Article Proceedings Paper

The colloidal approach. A promising route for asphaltene deposition modelling

Publisher

EDP SCIENCES S A
DOI: 10.2516/ogst:2007083

Keywords

-

Ask authors/readers for more resources

It is now widely recognized that asphaltene exist in crude oils both as dissolved and particulate matter and that asphatenic crude oils behave as colloidal systems. The objective of this research work is to check if, in porous media and under dynamic conditions, asphaltene also behave as colloids. In this case, their deposition kinetic should obey the classical laws for colloid deposition in porous media. To achieve this, asphaltene deposition kinetics has been investigated as a function of the main controlling parameters such as flow rate, asphaltene aggregation state, resin content and crude origin. The study has been performed, first under well controlled condition using model fluids and porous media, and then under more representative conditions using actual crude oils and outcrop sandstones. The results confirmed that, indeed, the kinetics of asphaltene deposition in porous media obeys the general scaling low of colloid deposition. They allowed us to propose general scaling laws for the deposition kinetics in the form eta proportional to A gamma(-s), eta is the capture efficiency and gamma the shear rate. The exponents s are universal exponents that are characteristic of the deposition regimes while the power law pre-factors A encompass all the specific features of the system considered (asphaltene and porous media). These kinetic laws show that the thickness of the deposit increases rapidly with decreasing shear rate. Accordingly and tinder favourable conditions, a thick deposit is expected to form during heavy oil extraction from high permeability formations and under low flow rate conditions. Such deposition could then have significant impact on the efficiency of heavy oil recovery. Therefore, its impact on permeability and on flow properties of reservoir fluids needs to be assessed as a part of process optimisation and evaluation. The Colloidal approach provides a new and promising route for asphaltene deposition and associated permeability damage modelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available