4.5 Article

Memory keeps you at home: a mechanistic model for home range emergence

Journal

OIKOS
Volume 118, Issue 5, Pages 641-652

Publisher

WILEY
DOI: 10.1111/j.1600-0706.2008.17003.x

Keywords

-

Categories

Funding

  1. French government
  2. NSERC Industrial Scholarship in collaboration with Weyerhaeuser
  3. ANR program 'Mobilite'

Ask authors/readers for more resources

Despite its central place in animal ecology no general mechanistic movement model with an emergent home-range pattern has yet been proposed. Random walk models, which are commonly used to model animal movement, show diffusion instead of a bounded home range and therefore require special modifications. Current approaches for mechanistic modeling of home ranges apply only to a limited set of taxa, namely territorial animals and/or central place foragers. In this paper we present a more general mechanistic movement model based on a biased correlated random walk, which shows the potential for home-range behavior. The model is based on an animal tracking a dynamic resource landscape, using a biologically plausible two-part memory system, i.e. a reference- and a working-memory. Our results show that by adding these memory processes the random walker produces home-range behavior as it gains experience, which also leads to more efficient resource use. Interestingly, home-range patterns, which we assessed based on home-range overlap and increase in area covered with time, require the combined action of both memory components to emerge. Our model has the potential to predict home-range size and can be used for comparative analysis of the mechanisms shaping home-range patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available