4.5 Article

Latitudinal trait variation and responses to drought in Arabidopsis lyrata

Journal

OECOLOGIA
Volume 175, Issue 2, Pages 577-587

Publisher

SPRINGER
DOI: 10.1007/s00442-014-2932-8

Keywords

Environmental change; Latitudinal cline; Phenotypic plasticity; Drought resistance; Drought tolerance

Categories

Funding

  1. Swiss National Science Foundation [PP00P3-123396/1]
  2. Fondation Pierre Mercier pour la Science

Ask authors/readers for more resources

Species may respond in three ways to environmental change: adapt, migrate, or go extinct. Studies of latitudinal clines can provide information on whether species have adapted to abiotic stress such as temperature and drought in the past and what the traits underlying adaptation are. We investigated latitudinal trait variation and response to drought in North American populations of Arabidopsis lyrata. Plants from nine populations collected over 13A degrees latitude were grown under well-watered and dry conditions. A total of 1,620 seedlings were raised and 12 phenological, physiological, morphological, and life history traits were measured. Two traits, asymptotic rosette size and the propensity to flower, were significantly associated with latitude: plants from northern locations grew to a larger size and were more likely to flower in the first season. Most traits displayed a plastic response to drought, but plasticity was never related linearly with latitude nor was it enhanced in populations from extreme latitudes with reduced water availability. Populations responded to drought by adopting mixed strategies of resistance, tolerance, and escape. The study shows that latitudinal adaptation in A. lyrata involves the classic life history traits, size at and timing of reproduction. Contrary to recent theoretical predictions, adaptation to margins is based on fixed trait differences and not on phenotypic plasticity, at least with respect to drought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available