4.5 Article

Plastic changes in tadpole trophic ecology revealed by stable isotope analysis

Journal

OECOLOGIA
Volume 173, Issue 1, Pages 95-105

Publisher

SPRINGER
DOI: 10.1007/s00442-012-2428-3

Keywords

Discrimination factor; Turnover; Isotopic incorporation; Invasive species; Diet shift

Categories

Funding

  1. Spanish Ministry of Science and Innovation [CGL-1123]
  2. Junta Andalucia PAI group [RNM 128]
  3. FEDER [CGL2009-11123]
  4. MICINN
  5. CSIC

Ask authors/readers for more resources

Amphibian larvae constitute a large fraction of the biomass of wetlands and play important roles in their energy flux and nutrient cycling. Interactions with predators and competitors affect their abundance but also their foraging behaviour, potentially leading to non-consumptive cascading effects on the whole trophic web. We experimentally tested for plastic changes in larval trophic ecology of two anuran species in response to competitors and the non-lethal presence of native and non-native predators, using stable isotope analysis. We hypothesized that tadpoles would alter their diet in the presence of competitors and native predators, and to a lesser extent or not at all in the presence of non-native predators. First, we conducted a controlled diet experiment to estimate tadpole turnover rates and discrimination factors using Pelobates cultripes and Bufo calamita. Turnover rates yielded a half-life of 15-20 days (attaining a quasi-isotopic equilibrium after 2 months), whereas discrimination factors for natural controlled diets resulted in different isotopic values essential for calibration. Second, we did an experiment with P. cultripes and Rana perezi (=Pelophylax perezi) where we manipulated the presence/absence of predators and heterospecific tadpoles using microcosms in the laboratory. We detected a significant shift in trophic status of both amphibian species in the presence of non-native crayfish: the delta N-15 values and macrophyte consumption of tadpoles increased, whereas their detritus consumption decreased. This suggests that tadpoles could have perceived crayfish as a predatory risk or that crayfish acted as competitors for algae and zooplankton. No dietary changes were observed in the presence of native dragonflies or when both tadpole species co-occurred. Stable isotopic analysis is an efficient way to assess variation in tadpoles' tropic status and hence understand their role in freshwater ecosystems. Here we provide baseline isotopic information for future trophic studies and show evidence for plastic changes in tadpoles' use of food resources under different ecological scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available