4.5 Article

The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species

Journal

OECOLOGIA
Volume 168, Issue 1, Pages 11-22

Publisher

SPRINGER
DOI: 10.1007/s00442-011-2065-2

Keywords

Bouteloua dactyloides; Decomposition; Hydraulic redistribution; Mineralization plant-soil water relations

Categories

Funding

  1. Spanish MEC
  2. U.S. EPA STAR
  3. Australian Research Council
  4. U.S. National Science Foundation [DEB 0717191, IOS 0920355]
  5. Direct For Biological Sciences
  6. Division Of Integrative Organismal Systems [0920355] Funding Source: National Science Foundation

Ask authors/readers for more resources

Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter (N-15-OM) in the upper layer and tested whether decomposition, mineralization and uptake of N-15 were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH4 (+)-N in ingrowth cores was highest in the W treatment, and NO3 (-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf N-15 contents and the N-15 uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or N-15 uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available