4.5 Article

Pacific salmon effects on stream ecosystems: a quantitative synthesis

Journal

OECOLOGIA
Volume 159, Issue 3, Pages 583-595

Publisher

SPRINGER
DOI: 10.1007/s00442-008-1249-x

Keywords

Ecosystem engineering; Marine-derived nutrients; Meta-analysis; Oncorhynchus; Resource subsidy

Categories

Funding

  1. USDACSREES National Research Initiative Competitive Grants Program [2006-35101-16566]
  2. Great Lakes Fishery Trust [2007.857]
  3. Center for Aquatic Conservation at the University of Notre Dame
  4. Peter J. Schmitt Foundation

Ask authors/readers for more resources

Pacific salmon (Oncorhynchus spp.) disturb sediments and fertilize streams with marine-derived nutrients during their annual spawning runs, leading researchers to classify these fish as ecosystem engineers and providers of resource subsidies. While these processes strongly influence the structure and function of salmon streams, the magnitude of salmon influence varies widely across studies. Here, we use meta-analysis to evaluate potential sources of variability among studies in stream ecosystem responses to salmon. Results obtained from 37 publications that collectively included 79 streams revealed positive, but highly inconsistent, overall effects of salmon on dissolved nutrients, sediment biofilm, macroinvertebrates, resident fish, and isotopic enrichment. Variation in these response variables was commonly influenced by salmon biomass, stream discharge, sediment size, and whether studies used artificial carcass treatments or observed a natural spawning run. Dissolved nutrients were positively related to salmon biomass per unit discharge, and the slope of the relationship for natural runs was five to ten times higher than for carcass additions. Mean effects on ammonium and phosphorus were also greater for natural runs than carcass additions, an effect attributable to excretion by live salmon. In contrast, we observed larger positive effects on benthic macroinvertebrates for carcass additions than for natural runs, likely because disturbance by live salmon was absent. Furthermore, benthic macroinvertebrates and biofilm associated with small sediments (< 32 mm) displayed a negative response to salmon while those associated with large sediments (> 32 mm) showed a positive response. This comprehensive analysis is the first to quantitatively identify environmental and methodological variables that influence the observed effects of salmon. Identifying sources of variation in salmon-stream interactions is a critical step toward understanding why engineering and subsidy effects vary so dramatically over space and time, and toward developing management strategies that will preserve the ecological integrity of salmon streams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available