4.5 Article

Predators reverse the direction of density dependence for juvenile salmon mortality

Journal

OECOLOGIA
Volume 156, Issue 3, Pages 515-522

Publisher

SPRINGER
DOI: 10.1007/s00442-008-1011-4

Keywords

generalist predator; inverse density dependence; predator swamping; salmon restoration; stream fish

Categories

Funding

  1. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [P42ES007373] Funding Source: NIH RePORTER
  2. NIEHS NIH HHS [ES 07373] Funding Source: Medline

Ask authors/readers for more resources

The effect of predators on prey populations depends on how predator-caused mortality changes with prey population density. Predators can enforce density-dependent prey mortality and contribute to population stability, but only if they have a positive numerical or behavioral response to increased prey density. Otherwise, predator saturation can result in inversely density-dependent mortality, destabilizing prey populations and increasing extinction risk. Juvenile salmon and trout provide some of the clearest empirical examples of density-dependent mortality in animal populations. However, although juvenile salmon are very vulnerable to predators, the demographic effects of predators on juvenile salmon are unknown. We tested the interactive effects of predators and population density on the mortality of juvenile Atlantic salmon (Salmo salar) using controlled releases of salmon in natural streams. We introduced newly hatched juvenile salmon at three population density treatments in six study streams, half of which contained slimy sculpin (Cottus cognatus), a common generalist predator (18 release sites in total, repeated over two summers). Sculpin reversed the direction of density dependence for juvenile salmon mortality. Salmon mortality was density dependent in streams with no sculpin, but inversely density dependent in streams where sculpin were abundant. Such predator-mediated inverse density dependence is especially problematic for prey populations suppressed by other factors, thereby presenting a fundamental challenge to persistence of rare populations and restoration of extirpated populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available