4.3 Article

The Global Seamount Census

Journal

OCEANOGRAPHY
Volume 23, Issue 1, Pages 24-33

Publisher

OCEANOGRAPHY SOC
DOI: 10.5670/oceanog.2010.60

Keywords

-

Categories

Funding

  1. Division Of Earth Sciences
  2. Directorate For Geosciences [0926762] Funding Source: National Science Foundation
  3. Division Of Ocean Sciences
  4. Directorate For Geosciences [0825045] Funding Source: National Science Foundation

Ask authors/readers for more resources

Seamounts are active or extinct undersea volcanoes with heights exceeding similar to 100 m. They represent a small but significant fraction of the volcanic extrusive budget for oceanic seafloor and their distribution gives information about spatial and temporal variations in intraplate volcanic activity. In addition, they sustain important ecological communities, determine habitats for fish, and act as obstacles to Currents, thus enhancing tidal energy dissipation and ocean mixing. Mapping the complete global distribution will help constrain models of seamount formation as well as aid in understanding marine habitats and deep ocean circulation. Two approaches have been used to map the global seamount distribution. Depth soundings from single- and multibeam echosounders can provide the most detailed maps with up to 200-m horizontal resolution. However, soundings from the > 5000 publicly available cruises sample only a small fraction of the ocean floor. Satellite altimetry can detect seamounts taller than similar to 1.5 km, and. studies using altimetry have produced seamount catalogues holding almost 13,000 seamounts. Based on the size-frequency relationship for larger seamounts, we predict over 100,000 seamounts > 1 km in height remain uncharted, and speculatively 25 million > 100 m in height. Future altimetry missions could improve on resolution and significantly decrease noise levels, allowing for an even larger number of intermediate (1-1.5-km height) seamounts to be detected. Recent retracking of the radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a twofold increase in resolution. Thus, improved analyses of existing altimetry with better calibration from multibeam bathymetry could also increase census estimates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available