4.3 Article

MONITORING OCEAN CURRENTS WITH SATELLITE SENSORS

Journal

OCEANOGRAPHY
Volume 23, Issue 4, Pages 94-103

Publisher

OCEANOGRAPHY SOC
DOI: 10.5670/oceanog.2010.08

Keywords

-

Categories

Ask authors/readers for more resources

The interconnected ocean surface current system involves multiple scales, including basin-wide gyres, fast narrow boundary currents, eddies, and turbulence. To understand the full system requires measuring a range of motions, from thousands of kilometers to less than a meter, and time scales from those that are climate related (decades) to daily processes. Presently, satellite systems provide us with global and regional maps of the ocean surface's mesoscale motion (larger than 100 km). Surface currents are measured indirectly from satellite systems. One method involves using remotely sensed fields of sea surface height, surface winds, and sea surface temperature within a physical model to produce currents. Another involves determining surface velocity from paths of drifting surface buoys transmitted to satellite sensors. Additional methods include tracking of surface features and exploitation of the Doppler shift in radar fields. The challenges for progress include measuring small and fast processes, capturing the vertical variation, and overcoming sensor limitations near coasts. Here, we detail the challenges as well as upcoming missions and advancements in satellite oceanography that will change our understanding of surface currents in the next 10 years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available