4.6 Article

Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3

Journal

OCEAN MODELLING
Volume 67, Issue -, Pages 52-70

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ocemod.2013.03.008

Keywords

Ocean reanalysis; Data assimilation; Ensemble Optimal Interpolation; GODAE; Operational Oceanography

Funding

  1. CSIRO
  2. Bureau of Meteorology
  3. Royal Australian Navy as part of the Bluelink project
  4. US Office of Naval Research

Ask authors/readers for more resources

The generation and evolution of eddies in the ocean are largely due to instabilities that are unpredictable, even on short time-scales. As a result, eddy-resolving ocean reanalyses typically use data assimilation to regularly adjust the model state. In this study, we present results from a second-generation eddy-resolving ocean reanalysis that is shown to match both assimilated and with-held observations more closely than its predecessor; but involves much smaller adjustments to the model state at each assimilation. We compare version 2 and 3 of the Bluelink ReANalysis (BRAN) in the Australian region. Overall, the misfits between the model fields in BRAN3 and observations are 5-28% smaller than the misfits for BRAN2. Specifically, we show that for BRAN3 (BRAN2) the sea-level, upper ocean temperature, upper-ocean salinity, and near-surface velocity match observations to within 7.7 cm (9.7 cm), 0.68 degrees C (0.95 degrees C), 0.16 psu (0.18 psu), and 20.2 cm/s (21.3 cm/s) respectively. We also show that the increments applied to BRAN3 - the artificial adjustments applied at each assimilation step - are typically 20-50% smaller than the equivalent adjustments in BRAN2. This leads us to conclude that the performance of BRAN3 is more dynamically consistent than BRAN2, rendering it more suitable for a range of applications, including analysis of ocean variability, extreme events, and process studies. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available