4.3 Article

Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf

Journal

OCEAN DYNAMICS
Volume 61, Issue 8, Pages 1175-1188

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10236-011-0423-6

Keywords

Unstructured grids; Finite volume; Hydrodynamics; Computational efficiency; Continental Shelf

Categories

Ask authors/readers for more resources

In this paper, a shallow-water flow solver is presented, based on the finite-volume method on unstructured grids The method is suitable for flows that occur in rivers, channels, sewer systems (1D), shallow seas, rivers, overland flow (2D), and estuaries, lakes and shelf breaks (3D). We present an outline of the numerical approach and show three 2D test cases and an application of tidal propagation on the Continental Shelf. The benefits of applying an unstructured grid were explored by creating an efficient model network that aims at keeping the number of grid cells per wavelength constant. The computational speed of our method was compared with that of WAQUA/TRIWAQ and Delft3D (the commonly used structured shallow-flow solvers in The Netherlands), and comparable performance was found.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available