4.3 Article

Development, implementation, and skill assessment of the NOAA/NOS Great Lakes Operational Forecast System

Journal

OCEAN DYNAMICS
Volume 61, Issue 9, Pages 1305-1316

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10236-011-0424-5

Keywords

Numerical modeling; Lake forecasts; Coastal nowcast/forecast lake modeling system

Categories

Funding

  1. NOS

Ask authors/readers for more resources

The NOAA Great Lakes Operational Forecast System (GLOFS) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water temperature and currents, and two-dimensional forecasts of water levels of the Great Lakes. This system, originally called the Great Lakes forecasting system (GLFS), was developed at The Ohio State University and NOAA's Great Lakes Environmental Research Laboratory (GLERL) in 1989. In 1996, a workstation version of the GLFS was ported to GLERL to generate semi-operational nowcasts and forecasts daily. In 2004, GLFS went through rigorous skill assessment and was transitioned to the National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS since September 30, 2005. Hindcast, nowcast, and forecast evaluations using the NOS-developed skill assessment software tool indicated both surface water levels and temperature predictions passed the NOS specified criteria at a majority of the validation locations with relatively low root mean square error (4-8 cm for water levels and 0.5 to 1A degrees C for surface water temperatures). The difficulty of accurately simulating seiches generated by storms (in particular in shallow lakes like Lake Erie) remains a major source of error in water level prediction and should be addressed in future improvements of the forecast system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available