4.3 Article

Numerical study of circulation on the inner Amazon Shelf

Journal

OCEAN DYNAMICS
Volume 58, Issue 3-4, Pages 187-198

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10236-008-0139-4

Keywords

Circulation; Inner Amazon Shelf; Numerical modeling

Categories

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico CNPq [200737/1997-0, 307466/2004-3, 309106/2007-9]
  2. Fundacao para o Desenvolvimento da UNESP Fundunesp [742/2006]

Ask authors/readers for more resources

We studied the circulation on the coastal domain of the Amazon Shelf by applying the hydrodynamic module of the estuarine and coastal ocean model and sediment transport. The first barotropic experiment aimed to explain the major bathymetric effects on tides and those generated by anisotropy in sediment distribution. We analyzed the continental shelf response of barotropic tides under realistic bottom stress parametrization (C (d) ), considering sediment granulometry obtained from a faciologic map, where river mud deposits and reworked sediments areas are well distinguished, among others classes of sediments. Very low C (d) values were set in the fluid mud regions off the Amapa coast (1.0 10(-4)), in contrast to values around 3.5 10(-3) for coarser sediment regions off the Para coast. Three-dimensional experiments represented the Amazon River discharge and trade winds, combined to barotropic tide influences and induced vertical mixing. The quasiresonant response of the Amazon Shelf to the M-2 tide acts on the local hydrodynamics by increasing tidal admittance, along with tidal forcing at the shelf break and extensive fluid mud regions. Harmonic analysis of modeled currents agreed well with the analysis of the AMASSEDS observational data set. Tidal-induced vertical shear provided strong homogenization of threshold waters, which are subject to a kind of hydraulic control due to the topographic steepness. Ahead of the hydraulic jump, the low-salinity plume is disconnected from the bottom and acquires negative vorticity, turning southeastward. Tides act as a generator mechanism and topography, via hydraulic control, acts as a maintainer mechanism for the low-salinity frontal zone positioning. Tidally induced southeastward plume fate is overwhelmed by northwestward trade winds so that they, along with background circulation, probably play the most important role on the plume fate and variability over the Amazon Shelf.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available