4.7 Article

One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions

Journal

TALANTA
Volume 142, Issue -, Pages 131-139

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2015.04.059

Keywords

Oxygen-rich nitrogen-doped graphene quantum dots; Fluorescence probe; Green synthesis; pH-Sensitive photoluminescence; Mercury

Funding

  1. National Natural Science Foundation of China [21175030, 21305020]
  2. BAGUI Scholar Program
  3. Science Foundations of Guangxi Normal University [2013ZD006]

Ask authors/readers for more resources

Nitrogen doping has been a powerful method to modulate the properties of carbon materials for various applications, and N-doped graphene quantum dots (GQDs) have gained remarkable interest because of their unique chemical, electronic, and optical properties. Herein, we introduce a facile one-pot solid-phase synthesis strategy for N-doped GQDs using citric acid (CA) as the carbon source and 3,4-dihydroxy-L-phenylalanine (L-DOPA) as the N source. The as-prepared N-GQDs with oxygen-rich functional groups are uniform with an average diameter of 12.5 nm. Because of the introduction of nitrogen atoms, N-GQDs exhibit excitation-wavelength-independent fluorescence with the maximum emission at 445 nm, and a high quantum yield of 18% is achieved at an excitation wavelength of 346 nm. Furthermore, a highly efficient fluorosensor based on the as-prepared N-GQDs was developed for the detection of Hg2+ because of the effective quenching effect of metal ions via nonradiative electron transfer. This fluorosensor exhibits high sensitivity toward Hg2+ with a detection limit of 8.6 nM. The selectivity experiments reveal that the fluorescent sensor is specific for Hg2+. Most importantly, the practical use of the sensor based on N-GQDs for Hg2+ detection was successfully demonstrated in river-water samples. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available