4.7 Article

A Modified Protocol to Maximize Differentiation of Human Preadipocytes and Improve Metabolic Phenotypes

Journal

OBESITY
Volume 20, Issue 12, Pages 2334-2340

Publisher

WILEY
DOI: 10.1038/oby.2012.116

Keywords

-

Funding

  1. NIH [DK-52398, DK-080448, P30 DK-046200]

Ask authors/readers for more resources

Adipose stromal cells proliferate and differentiate into adipocytes, providing a valuable model system for studies of adipocyte biology. We compared differentiation protocols for human preadipocytes and report on their metabolic phenotypes. By simply prolonging the adipogenic induction period from the first 3 to 7 days, the proportion of cells acquiring adipocyte morphology increased from 30-70% to over 80% in human subcutaneous preadipocytes (passages 5-6). These morphological changes were accompanied by increases in the adipogenic marker expression and improved adipocyte metabolic phenotypes: enhanced responses to beta-adrenergically stimulated lipolysis and to insulin-stimulated glucose metabolism into triglyceride (TG). Confirming previous studies, fetal bovine serum (FBS) dose-dependently inhibited adipogenesis. However, in subcutaneous preadipocytes that differentiate well (donor-dependant high capacity and subcultured fewer than two times), the use of 7d-induction protocols in both 3% FBS and serum-free conditions allowed >80% differentiation. Responsiveness to beta-adrenergically stimulated lipolysis was lower in 3% FBS. Rates of insulin-stimulated glucose uptake were higher in adipocytes differentiated with 3% FBS, whereas the sensitivity to insulin was almost identical between the two groups. In summary, extending the length of the induction period in adipogenic cocktail improves the degree of differentiation and responses to key metabolic hormones. This protocol permits functional analysis of metabolic phenotypes in valuable primary human adipocyte cultures through multiple passages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available