4.5 Article

Trigonella foenum graecum seed extract protects kidney function and morphology in diabetic rats via its antioxidant activity

Journal

NUTRITION RESEARCH
Volume 31, Issue 7, Pages 555-562

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.nutres.2011.05.010

Keywords

Trigonella foenum graecum; Diabetic nephropathy; Oxidative stress; Antioxidant activity; Renal function; Morphology; Rats

Funding

  1. Shaanxi Science and Technology Agency [2006K09-G11]

Ask authors/readers for more resources

Oxidative stress is involved in the development and progression of diabetic nephropathy (DN). Because Trigonella foenum graecum has been reported to have antidiabetic and antioxidative effects, we hypothesized that T foenum graecum seed aqueous extract (TE) restores the kidney function of diabetic rats via its antioxidant activity. Rats were fed diets enriched with sucrose (50%, wt/wt), lard (30%, wt/wt), and cholesterol (2.5%, wt/wt) for 8 weeks to induce insulin resistance. After a DN model was induced by streptozotocin, the rats were administered a low (440 mg/kg), medium (870 mg/kg), or high (1740 mg/kg) dose of TE by oral intragastric intubation for 6 weeks. In TE-treated DN rats, blood glucose, kidney/body weight ratio, serum creatinine, blood urea nitrogen, 24-hour content of urinary protein, and creatinine clearance were significantly decreased compared with nontreated DN rats. Diabetic rats showed decreased activities of superoxide dismutase and catalase, increased concentrations of malondialdehyde in the serum and kidney, and increased levels of 8-hydroxy-2'-deoxyguanosine in urine and renal cortex DNA. Treatment with TIE restored the altered parameters in a dose-dependent manner. Furthermore, all of the ultramorphologic abnormalities in the kidney of diabetic rats, including the uneven thickening of the glomerular base membrane, were markedly ameliorated by TE treatment. We conclude that TE confers protection against functional and morphologic injuries in the kidneys of diabetic rats by increasing activities of antioxidants and inhibiting accumulation of oxidized DNA in the kidney, suggesting a potential drug for the prevention and therapy of DN. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available