4.4 Article

LATTICE BOLTZMANN SIMULATION OF CONVECTIVE HEAT TRANSFER FROM HEATED BLOCKS IN A HORIZONTAL CHANNEL

Journal

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
Volume 56, Issue 5, Pages 422-443

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10407780903244338

Keywords

-

Ask authors/readers for more resources

This article presents the application of the multiple-relaxation-time (MRT) lattice Boltzmann equation (LBE) method with nine-velocity model to the numerical prediction of a laminar and convective-heated transfer through a two-dimensional obstructed channel flow. The obstruction is carried out by three obstacles including two located on the upper wall and the other on the lower wall of the channel. The calculations are validated against results available in literature. Various physical arrangements are regarded as the size of the obstacles and the distance between the two upper obstacles to investigate their effects on thermal and flow characteristics. Results, presented for a Prandtl number equal to 0.71 and a Reynolds number ranging from 100 to 1200, showed that the heat transfer and the air flow depend both on the Reynolds number and geometric data of the configuration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available