4.8 Article

Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system

Journal

NUCLEIC ACIDS RESEARCH
Volume 42, Issue 12, Pages 7884-7893

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku510

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [PU 435/1-1]
  2. Strategischer Forschungsfonds at the Heinrich Heine University

Ask authors/readers for more resources

The adaptation against foreign nucleic acids by the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) depends on the insertion of foreign nucleic acid-derived sequences into the CRISPR array as novel spacers by still unknown mechanism. We identified and characterized in Escherichia coli intermediate states of spacer integration and mapped the integration site at the chromosomal CRISPR array in vivo. The results show that the insertion of new spacers occurs by site-specific nicking at both strands of the leader proximal repeat in a staggered way and is accompanied by joining of the resulting 5 '-ends of the repeat strands with the 3 '-ends of the incoming spacer. This concerted cleavage-ligation reaction depends on the metal-binding center of Cas1 protein and requires the presence of Cas2. By acquisition assays using plasmid-located CRISPR array with mutated repeat sequences, we demonstrate that the primary sequence of the first repeat is crucial for cleavage of the CRISPR array and the ligation of new spacer DNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available