4.8 Article

High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs

Journal

NUCLEIC ACIDS RESEARCH
Volume 42, Issue 10, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku251

Keywords

-

Funding

  1. Danish Cancer Society [R2-A132-02-S2, R40-A1936-11-S2]
  2. Novo Nordisk Center for Biosustainability
  3. University of Copenhagen Excellence Programme
  4. Danish Cancer Research Foundation [10114941]
  5. Novo Nordisk Foundation
  6. Danish National Research Foundation
  7. National Institutes of Health [NIH RO1 CA142647]
  8. BRIC
  9. Lundbeck Foundation [R108-2012-10312] Funding Source: researchfish
  10. Novo Nordisk Fonden [NNF12OC1016141, NNF11OC1015111] Funding Source: researchfish

Ask authors/readers for more resources

Targeted endonucleases including zinc finger nucleases (ZFNs) and clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas9 are increasingly being used for genome editing in higher species. We therefore devised a broadly applicable and versatile method for increasing editing efficiencies by these tools. Briefly, 2A peptide-coupled co-expression of fluorescent protein and nuclease was combined with fluorescence-activated cell sorting (FACS) to allow for efficient isolation of cell populations with increasingly higher nuclease expression levels, which translated into increasingly higher genome editing rates. For ZFNs, this approach, combined with delivery of donors as single-stranded oligodeoxynucleotides and nucleases as messenger ribonucleic acid, enabled high knockin efficiencies in demanding applications, including biallelic codon conversion frequencies reaching 30-70% at high transfection efficiencies and similar to 2% at low transfection efficiencies, simultaneous homozygous knockin mutation of two genes with similar to 1.5% efficiency as well as generation of cell pools with almost complete codon conversion via three consecutive targeting and FACS events. Observed off-target effects were minimal, and when occurring, our data suggest that they may be counteracted by selecting intermediate nuclease levels where off-target mutagenesis is low, but on-target mutagenesis remains relatively high. The method was also applicable to the CRISPR/Cas9 system, including CRISPR/Cas9 mutant nickase pairs, which exhibit low off-target mutagenesis compared to wild-type Cas9.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available