4.8 Article

Functional signature for the recognition of specific target mRNAs by human Staufen1 protein

Journal

NUCLEIC ACIDS RESEARCH
Volume 42, Issue 7, Pages 4516-4526

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gku073

Keywords

-

Funding

  1. Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovacion) [BFU2010-17540/BMC]
  2. Fundacion Marcelino Botin
  3. Spanish Ministry of Science and Innovation

Ask authors/readers for more resources

Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear. Here we used a combination of affinity chromatography, RNAse-protection, deep-sequencing and bioinformatic analyses to identify mRNAs differentially associated to hStau1 or a mutant protein unable to bind RNA and, in this way, defined a collection of mRNAs specifically associated to wt hStau1. A common sequence signature consisting of two opposite-polarity Alu motifs was present in the hStau1-associated mRNAs and was shown to be sufficient for binding to hStau1 and hStau1-dependent stimulation of protein expression. Our results unravel how hStau1 identifies a wide spectrum of cellular target mRNAs to control their localization, expression and fate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available