4.8 Article

The output of the tRNA modification pathways controlled by the Escherichia coli MnmEG and MnmC enzymes depends on the growth conditions and the tRNA species

Journal

NUCLEIC ACIDS RESEARCH
Volume 42, Issue 4, Pages 2602-2623

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkt1228

Keywords

-

Funding

  1. Spanish Ministry of Economy and Competitiveness [BFU2007-66509, BFU2010-19737]
  2. Generalitat Valenciana [ACOMP/2012/065, PROMETEO/2012/061]
  3. Swedish Science Research Council [BU-2930]
  4. Carl Trygger Foundation
  5. Ministry of Science and Innovation

Ask authors/readers for more resources

In Escherichia coli, the MnmEG complex modifies transfer RNAs (tRNAs) decoding NNA/NNG codons. MnmEG catalyzes two different modification reactions, which add an aminomethyl (nm) or carboxymethylaminomethyl (cmnm) group to position 5 of the anticodon wobble uridine using ammonium or glycine, respectively. In tRNA(cmnm5s2UUG)(Gln) and tRNA(cmnm5UmAA)(Leu), however, cmnm(5) appears as the final modification, whereas in the remaining tRNAs, the MnmEG products are converted into 5-methylaminomethyl (mnm(5)) through the two-domain, bi-functional enzyme MnmC. MnmC(o) transforms cmnm(5) into nm(5), whereas MnmC(m) converts nm(5) into mnm(5), thus producing an atypical network of modification pathways. We investigate the activities and tRNA specificity of MnmEG and the MnmC domains, the ability of tRNAs to follow the ammonium or glycine pathway and the effect of mnmC mutations on growth. We demonstrate that the two MnmC domains function independently of each other and that tRNA(cmnm5s2UUG)(Gln) and tRNA(cmnm5UmAA)(Leu) are substrates for MnmC(m), but not MnmC(o). Synthesis of mnm(5)s(2) U by MnmEG-MnmC in vivo avoids build-up of intermediates in tRNA(mnm5s2UUU)(Lys). We also show that MnmEG can modify all the tRNAs via the ammonium pathway. Strikingly, the net output of the MnmEG pathways in vivo depends on growth conditions and tRNA species. Loss of any MnmC activity has a biological cost under specific conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available