4.8 Article

Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human

Journal

NUCLEIC ACIDS RESEARCH
Volume 41, Issue 22, Pages 10135-10149

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkt770

Keywords

-

Funding

  1. CNRS
  2. Agence Nationale de la Recherche (Nucleopol and ODynRib - Jeune chercheur programme)
  3. Jeune equipe from FRM
  4. FRM
  5. Science Foundation Ireland [07/IN.1/B924]
  6. ANR ODynRib
  7. Science Foundation Ireland (SFI) [07/IN.1/B924] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

Ribosome biogenesis is a major metabolic effort for growing cells. In Saccharomyces cerevisiae, Hmo1, an abundant high-mobility group box protein (HMGB) binds to the coding region of the RNA polymerase I transcribed ribosomal RNAs genes and the promoters of similar to 70% of ribosomal protein genes. In this study, we have demonstrated the functional conservation of eukaryotic HMGB proteins involved in ribosomal DNA (rDNA) transcription. We have shown that when expressed in budding yeast, human UBF1 and a newly identified Sp-Hmo1 (Schizosaccharomyces pombe) localize to the nucleolus and suppress growth defect of the RNA polymerase I mutant rpa49-Delta. Owing to the multiple functions of both proteins, Hmo1 and UBF1 are not fully interchangeable. By deletion and domains swapping in Hmo1, we identified essential domains that stimulate rDNA transcription but are not fully required for stimulation of ribosomal protein genes expression. Hmo1 is organized in four functional domains: a dimerization module, a canonical HMGB motif followed by a conserved domain and a C-terminal nucleolar localization signal. We propose that Hmo1 has acquired species-specific functions and shares with UBF1 and Sp-Hmo1 an ancestral function to stimulate rDNA transcription.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available