4.8 Article

Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid

Journal

NUCLEIC ACIDS RESEARCH
Volume 41, Issue 6, Pages 3874-3887

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkt053

Keywords

-

Funding

  1. Polish National Science Center [N N301 439738]
  2. FP7 HEALTHPROT project [229676]
  3. WeNMR project [261572]
  4. Foundation for Polish Science [TEAM/2009-4/2]
  5. National Cancer Institute, National Institutes of Health, Department of Health and Human Services
  6. National Institutes of Health [HHSN261200800001E]
  7. Howard Hughes Medical Institute
  8. Foundation for Polish Science 'Ideas for Poland' award
  9. Polish Ministry of Science and Higher Education [ESRF/73/2006]
  10. European Community [226716]
  11. International Institute of Molecular and Cell Biology, Polish National Science Center Grant [N N301 439738]

Ask authors/readers for more resources

A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate-a key difference between monomeric and dimeric RTs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available