4.8 Article

Genetic robustness and functional evolution of gene duplicates

Journal

NUCLEIC ACIDS RESEARCH
Volume 42, Issue 4, Pages 2405-2414

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkt1200

Keywords

-

Funding

  1. National Institutes of Health (NIH) [GM079759]
  2. National Centers for Biomedical Computing [U54CA121852]

Ask authors/readers for more resources

Gene duplications are a major source of evolutionary innovations. Understanding the functional divergence of duplicates and their role in genetic robustness is an important challenge in biology. Previously, analyses of genetic robustness were primarily focused on duplicates essentiality and epistasis in several laboratory conditions. In this study, we use several quantitative data sets to understand compensatory interactions between Saccharomyces cerevisiae duplicates that are likely to be relevant in natural biological populations. We find that, owing to their high functional load, close duplicates are unlikely to provide substantial backup in the context of large natural populations. Interestingly, as duplicates diverge from each other, their overall functional load is reduced. At intermediate divergence distances the quantitative decrease in fitness due to removal of one duplicate becomes smaller. At these distances, yeast duplicates display more balanced functional loads and their transcriptional control becomes significantly more complex. As yeast duplicates diverge beyond 70% sequence identity, their ability to compensate for each other becomes similar to that of random pairs of singletons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available