4.8 Article

The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes

Journal

NUCLEIC ACIDS RESEARCH
Volume 39, Issue 9, Pages 3806-3819

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq1219

Keywords

-

Funding

  1. American Cancer Society [ACS2008-01868]
  2. University of Illinois Department of Microbiology

Ask authors/readers for more resources

A number of bacterial small RNAs (sRNAs) act as global regulators of stress responses by controlling expression of multiple genes. The sRNA SgrS is expressed in response to glucose-phosphate stress, a condition associated with disruption of glycolytic flux and accumulation of sugar-phosphates. SgrS has been shown to stimulate degradation of the ptsG mRNA, encoding the major glucose transporter. This study demonstrates that SgrS regulates the genes encoding the mannose and secondary glucose transporter, manXYZ. Analysis of manXYZ mRNA stability and translation in the presence and absence of SgrS indicate that manXYZ is regulated by SgrS under stress conditions and when SgrS is ectopically expressed. In vitro footprinting and in vivo mutational analyses showed that SgrS base pairs with manXYZ within the manX coding sequence to prevent manX translation. Regulation of manX did not require the RNase E degradosome complex, suggesting that the primary mechanism of regulation is translational. An Escherichia coli ptsG mutant strain that is manXYZ(+) experiences stress when exposed to the glucose analogs alpha-methyl glucoside or 2-deoxyglucose. A ptsG manXYZ double mutant is resistant to the stress, indicating that PTS transporters encoded by both SgrS targets are involved in taking up substrates that cause stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available