4.8 Article

Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome

Journal

NUCLEIC ACIDS RESEARCH
Volume 39, Issue 4, Pages 1501-1509

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq920

Keywords

-

Funding

  1. Howard Hughes Medical Institute
  2. National Cancer Institute [R01 CA77097-08]
  3. Stanford Graduate Fellowship
  4. National Human Genome Research Institute [T32HG00044]

Ask authors/readers for more resources

Post-transcriptional regulation of gene expression, including mRNA localization, translation and decay, is ubiquitous yet still largely unexplored. How is the post-transcriptional regulatory program of each mRNA encoded in its sequence? Hundreds of specific RNA-binding proteins (RBPs) appear to play roles in mediating the post-transcriptional regulatory program, akin to the roles of specific DNA-binding proteins in transcription. As a step toward decoding the regulatory programs encoded in each mRNA, we focused on specific mRNA-protein interactions. We computationally analyzed the sequences of Saccharomyces cerevisiae mRNAs bound in vivo by 29 specific RBPs, identifying eight novel candidate motifs and confirming or extending six earlier reported recognition elements. Biochemical selections for RNA sequences selectively recognized by 12 yeast RBPs yielded novel motifs bound by Pin4, Nsr1, Hrb1, Gbp2, Sgn1 and Mrn1, and recovered the known recognition elements for Puf3, She2, Vts1 and Whi3. Most of the RNA elements we uncovered were associated with coherent mRNA expression changes and were significantly conserved in related yeasts, supporting their functional importance and suggesting that the corresponding RNA-protein interactions are evolutionarily conserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available