4.8 Article

Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit

Journal

NUCLEIC ACIDS RESEARCH
Volume 39, Issue 5, Pages 1903-1918

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq1033

Keywords

-

Funding

  1. Biomedical Research Council (BMRC) of Singapore
  2. A*STAR [R154000362305]
  3. Croatian Ministry of Science [006-0982913-1219]
  4. ICGEB [CRP/CRO08-02]
  5. EU [043682, LSHG-CT-2005-518238]
  6. Polish Ministry of Science and Higher Education [N301 2396 33, 188/N-DFG/2008/0]
  7. National University of Singapore (NUS)

Ask authors/readers for more resources

NpmA, a methyltransferase that confers resistance to aminoglycosides was identified in an Escherichia coli clinical isolate. It belongs to the kanamycin-apramycin methyltransferase (Kam) family and specifically methylates the 16S rRNA at the N1 position of A1408. We determined the structures of apo-NpmA and its complexes with S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.4, 2.7 and 1.68 A, respectively. We generated a number of NpmA variants with alanine substitutions and studied their ability to bind the cofactor, to methylate A1408 in the 30S subunit, and to confer resistance to kanamycin in vivo. Residues D30, W107 and W197 were found to be essential. We have also analyzed the interactions between NpmA and the 30S subunit by footprinting experiments and computational docking. Helices 24, 42 and 44 were found to be the main NpmA-binding site. Both experimental and theoretical analyses suggest that NpmA flips out the target nucleotide A1408 to carry out the methylation. NpmA is plasmid-encoded and can be transferred between pathogenic bacteria; therefore it poses a threat to the successful use of aminoglycosides in clinical practice. The results presented here will assist in the development of specific NpmA inhibitors that could restore the potential of aminoglycoside antibiotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available