4.8 Article

Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation

Journal

NUCLEIC ACIDS RESEARCH
Volume 39, Issue 8, Pages 3373-3387

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq1247

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. NSERC
  3. Fonds de la recherche en Sante du Quebec (FRSQ)

Ask authors/readers for more resources

The Bacillus subtilis lysC lysine riboswitch modulates its own gene expression upon lysine binding through a transcription attenuation mechanism. The riboswitch aptamer is organized around a single five-way junction that provides the scaffold for two long-range tertiary interactions (loop L2-loop L3 and helix P2-loop L4)-all of this for the creation of a specific lysine binding site. We have determined that the interaction P2-L4 is particularly important for the organization of the ligand-binding site and for the riboswitch transcription attenuation control. Moreover, we have observed that a folding synergy between L2-L3 and P2-L4 allows both interactions to fold at lower magnesium ion concentrations. The P2-L4 interaction is also critical for the close juxtaposition involving stems P1 and P5. This is facilitated by the presence of lysine, suggesting an active role of the ligand in the folding transition. We also show that a previously uncharacterized stem-loop located in the expression platform is highly important for the riboswitch activity. Thus, folding elements located in the aptamer and the expression platform both influence the lysine riboswitch gene regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available