4.8 Article

A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain

Journal

NUCLEIC ACIDS RESEARCH
Volume 38, Issue 11, Pages 3692-3708

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkq087

Keywords

-

Funding

  1. Agence Nationale de la Recherche [06-PCVI-0015]
  2. TrioH European project [503480]
  3. Centre National de la Recherche Scientifique
  4. Institut d'Alembert

Ask authors/readers for more resources

HIV-1 integrase catalyzes the insertion of the viral genome into chromosomal DNA. We characterized the structural determinants of the 3'-processing reaction specificity-the first reaction of the integration process-at the DNA-binding level. We found that the integrase N-terminal domain, containing a pseudo zinc-finger motif, plays a key role, at least indirectly, in the formation of specific integrase-DNA contacts. This motif mediates a cooperative DNA binding of integrase that occurs only with the cognate/viral DNA sequence and the physiologically relevant Mg(2+) cofactor. The DNA-binding was essentially non-cooperative with Mn(2+) or using non-specific/random sequences, regardless of the metallic cofactor. 2,2'-Dithiobisbenzamide-1 induced zinc ejection from integrase by covalently targeting the zinc-finger motif, and significantly decreased the Hill coefficient of the Mg(2+)-mediated integrase-DNA interaction, without affecting the overall affinity. Concomitantly, 2,2'-dithiobisbenzamide-1 severely impaired 3'-processing (IC(50) = 11-15 nM), suggesting that zinc ejection primarily perturbs the nature of the active integrase oligomer. A less specific and weaker catalytic effect of 2,2'-dithiobisbenzamide-1 is mediated by Cys 56 in the catalytic core and, notably, accounts for the weaker inhibition of the non-cooperative Mn(2+)-dependent 3'-processing. Our data show that the cooperative DNA-binding mode is strongly related to the sequence-specific DNA-binding, and depends on the simultaneous presence of the Mg(2+) cofactor and the zinc effector.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available