4.8 Article

A fast and efficient translational control system for conditional expression of yeast genes

Journal

NUCLEIC ACIDS RESEARCH
Volume 37, Issue 18, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkp578

Keywords

-

Funding

  1. The Aventis Foundation
  2. Volkswagenstiftung [I/79 950]
  3. Deutsche Forschungsgemeinschaft [SU 402/1-2, SFB579]

Ask authors/readers for more resources

A new artificial regulatory system for essential genes in yeast is described. It prevents translation of target mRNAs upon tetracycline (tc) binding to aptamers introduced into their 5'UTRs. Exploiting direct RNA-ligand interaction renders auxiliary protein factors unnecessary. Therefore, our approach is strain independent and not susceptible to interferences by heterologous expressed regulatory proteins. We use a simple PCR-based strategy, which allows easy tagging of any target gene and the level of gene expression can be adjusted due to various tc aptamer-regulated promoters. As proof of concept, five differently expressed genes were targeted, two of which could not be regulated previously. In all cases, adding tc completely prevented growth and, as shown for Nop14p, rapidly abolished de novo protein synthesis providing a powerful tool for conditional regulation of yeast gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available