4.8 Article

Alternative splicing of Alu exons -: two arms are better than one

Journal

NUCLEIC ACIDS RESEARCH
Volume 36, Issue 6, Pages 2012-2023

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkn024

Keywords

-

Ask authors/readers for more resources

Alus, primate-specific retroelements, are the most abundant repetitive elements in the human genome. They are composed of two related but distinct monomers, left and right arms. Intronic Alu elements may acquire mutations that generate functional splice sites, a process called exonization. Most exonizations occur in right arms of antisense Alu elements, and are alternatively spliced. Here we show that without the left arm, exonization of the right arm shifts from alternative to constitutive splicing. This eliminates the evolutionary conserved isoform and may thus be selected against. We further show that insertion of the left arm downstream of a constitutively spliced non-Alu exon shifts splicing from constitutive to alternative. Although the two arms are highly similar, the left arm is characterized by weaker splicing signals and lower exonic splicing regulatory (ESR) densities. Mutations that improve these potential splice signals activate exonization and shift splicing from the right to the left arm. Collaboration between two or more putative splice signals renders the intronic left arm with a pseudo-exon function. Thus, the dimeric form of the Alu element fortuitously provides it with an evolutionary advantage, allowing enrichment of the primate transcriptome without compromising its original repertoire.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available