4.3 Article

Hyperscaling above the upper critical dimension

Journal

NUCLEAR PHYSICS B
Volume 865, Issue 1, Pages 115-132

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nuclphysb.2012.07.021

Keywords

-

Funding

  1. EU [269139, 295302]
  2. Research Sabbatical Fellowship at Coventry University

Ask authors/readers for more resources

Above the upper critical dimension, the breakdown of hyperscaling is associated with dangerous irrelevant variables in the renormalization group formalism at least for systems with periodic boundary conditions. While these have been extensively studied, there have been only a few analyses of finite-size scaling with free boundary conditions. The conventional expectation there is that, in contrast to periodic geometries, finite-size scaling is Gaussian, governed by a correlation length commensurate with the lattice extent. Here, detailed numerical studies of the five-dimensional Ising model indicate that this expectation is unsupported, both :it the infinite-volume critical point and at the pseudocritical point where the finite-size susceptibility peaks. Instead the evidence indicates that finite-size scaling at the pseudocritical point is similar to that in the periodic case. An analytic explanation is offered which allows hyperscaling to be extended beyond the upper critical dimension. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available