4.3 Article

Non-vanishing boundary effects and quasi-first-order phase transitions in high dimensional Ising models

Journal

NUCLEAR PHYSICS B
Volume 845, Issue 1, Pages 120-139

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nuclphysb.2010.12.002

Keywords

Ising model; Phase transitions; Boundary effects

Ask authors/readers for more resources

In order to gain a better understanding of the Ising model in higher dimensions we have made a comparative study of how the boundary, open versus cyclic, of a d-dimensional simple lattice, for d = 1,...,5, affects the behaviour of the specific heat C and its microcanonical relative, the entropy derivative -partial derivative(2)S/partial derivative U(2). In dimensions 4 and 5 the boundary has a strong effect on the critical region of the model and for cyclic boundaries in dimension 5 we find that the model displays a quasi-first-order phase transition with a bimodal energy distribution. The latent heat decreases with increasing systems size but for all system sizes used in earlier papers the effect is clearly visible once a wide enough range of values for K is considered. Relations to recent rigorous results for high dimensional percolation and previous debates on simulation of Ising models and gauge fields are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available