4.3 Article

Gravitational fixed points and asymptotic safety from perturbation theory

Journal

NUCLEAR PHYSICS B
Volume 833, Issue 3, Pages 226-270

Publisher

ELSEVIER
DOI: 10.1016/j.nuclphysb.2010.01.016

Keywords

-

Ask authors/readers for more resources

The fixed point structure of the renormalization flow in Einstein gravity and higher derivative gravity is investigated in terms of the background effective action. A refined perturbative framework is developed consisting of: use of a covariant operator regularization that keeps track of powerlike divergences, a non-minimal subtraction ansatz for the originally dimensionful couplings in combination with a 'Wilsonian' matching condition, and the construction of a one-loop effective action exactly gauge-independent on-shell in regularized form. Using this framework strictly positive fixed points for the dimensionless Newton constant g(N) and the cosmological constant X can be identified already in one-loop perturbation theory. The renormalization flow is asymptotically safe with respect to the nontrivial fixed points in both cases. In Einstein gravity a residual gauge dependence of the fixed points is unavoidable while in higher derivative gravity both the fixed point and the flow equations are universal. Along this flow spectral positivity of the Hessians can be satisfied, thereby meeting an essential condition for a well-defined Euclidean field theory setting. Dependence on O(10) initial data is erased to accuracy 0.5% after O(100) units of the renormalization mass scale and the flow settles on a X(gN) orbit. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available