4.2 Article

Two-gluon correlations in heavy-light ion collisions: Energy and geometry dependence, IR divergences, and kT-factorization

Journal

NUCLEAR PHYSICS A
Volume 925, Issue -, Pages 254-295

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nuclphysa.2014.02.021

Keywords

Parton saturation; Color glass condensate; Gluon production; High energy collisions

Funding

  1. U.S. Department of Energy [DE-SC0004286]
  2. U.S. Department of Energy (DOE) [DE-SC0004286] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

We study the properties of the cross section for two-gluon production in heavy light ion collisions derived in our previous paper [1] in the saturation/Color Glass Condensate framework. Concentrating on the energy and geometry dependence of the corresponding correlation functions we find that the two-gluon correlator is a much slower function of the center-of-mass energy than the one- and two-gluon production cross sections. The geometry dependence of the correlation function leads to stronger azimuthal near- and away-side correlations in the tip-on-tip U + U collisions than in the side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark-gluon plasma: a study of azimuthal correlations in the U + U collisions may thus help to disentangle the two sources of correlations. We demonstrate that the cross section for two-gluon production in heavy light ion collisions contains a power-law infrared (IR) divergence even for fixed produced gluon momenta: while saturation effects in the target regulate some of the power-law IR-divergent terms in the lowest-order expression for the two-gluon correlator, other power-law IR-divergent terms remain, possibly due to absence of saturation effects in the dilute projectile. Finally we rewrite our result for the two-gluon production cross-section in a k(T)-factorized form, obtaining a new factorized expression involving a convolution of one- and two-gluon Wigner distributions over both the transverse momenta and impact parameters. We show that the two-gluon production cross-section depends on two different types of unintegrated two-gluon Wigner distribution functions. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available