4.2 Article Proceedings Paper

Chern-Simons current and local parity violation in hot QCD matter

Journal

NUCLEAR PHYSICS A
Volume 830, Issue -, Pages 543C-546C

Publisher

ELSEVIER
DOI: 10.1016/j.nuclphysa.2009.10.049

Keywords

-

Ask authors/readers for more resources

Non-Abelian gauge theories live in a space-time with non-trivial topology that can be characterized by an odd-dimensional Chern-Simons form. In QCD, Chern-Simons form is induced by the chiral anomaly and the presence of topological solutions; it opens a possibility for the breaking of P and CP invariances in strong interactions (the strong CP problem). While there is apparently no global P and CP violation in QCD, here I argue that topological fluctuations in hot quark-gluon matter can become directly observable in the presence of a very intense external magnetic field by inducing local P- and CP- odd effects. These phenomena can be described by using the Maxwell-Chern-Simons electrodynamics as an effective theory. Local P and CP violation in hot QCD matter can be observed in experiment through the chiral magnetic effect - the separation of electric charge along the axis of magnetic field that is created by the colliding relativistic ions. There is a recent evidence for the electric charge separation relative to the reaction plane of heavy ion collisions from the STAR Collaboration at RHIC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available