4.3 Article

Relationship between radiation damage anisotropy in MgO and YSZ single crystals and the Ion/Atom ratio deposition parameter in biaxially-textured MgO and YSZ thin films fabricated by ion beam assisted deposition

Publisher

ELSEVIER
DOI: 10.1016/j.nimb.2009.12.018

Keywords

Magnesia; Yttria-stabilized zirconia; Irradiation damage; Ion beam assisted deposition

Funding

  1. US Department of Energy Office of Basic Energy Sciences, Division of Materials Sciences and Engineering

Ask authors/readers for more resources

To elucidate the underlying physics of ion beam assisted deposition (IBAD), irradiation damage effects in magnesia (MgO) and yttria-stabilized zirconia (YSZ) were investigated. Ion irradiations were performed on MgO and YSZ single crystals of three low-index crystallographic orientations using 100 and 150 key Ar+ ions over a fluence range from 1 x 10(14) to 5 x 10(16) Ar/cm(2). Damage accumulation was analyzed using Rutherford backscattering spectrometry combined with ion channeling. Damage evolution with increasing ion fluence proceeded via several characteristic stages and the total damage exhibited a strong dependence on crystallographic orientation. For both MgO and YSZ, damage anisotropy was maximal at a stage when the damage saturated, with the (1 1 0) crystallographic orientation being the most radiation damage resistant. The Ion/Atom ratio deposition parameter reported for IBAD of MgO and YSZ films was found to correlate with the damage plateau stage described above. Finally, the role of the Ion/Atom ratio is discussed in terms of radiation damage anisotropy mechanism. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available