4.3 Article

Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica

Publisher

ELSEVIER
DOI: 10.1016/j.nimb.2008.02.036

Keywords

ZnO nanoparticles; ion implantation; X-ray diffraction; elasticity theory

Ask authors/readers for more resources

We present an experimental and theoretical study on the structural properties of ZnO nanoparticles embedded in silica. The ZnO-SiO2 nanocomposite was prepared by ion implanting a Zn+ beam in a silica slide and by annealing in oxidizing atmosphere at 800 degrees C. From an experimental point of view, the structural properties of the ZnO-SiO2 nanocomposite were studied by using glancing incidence X-ray diffraction. According to the results, zinc crystalline nanoclusters with an average diameter of 13 nm are in the as-implanted sample. The annealing in oxidizing atmosphere promotes the total oxidation of the Zn nanoclusters and increases their size until to an average of 22 nm. Moreover, the formed ZnO nanocrystals have a preferential (002) crystallographic orientation. From a theoretical point of view, the preferential orientation of the ZnO nanoparticles can be explained satisfactory by the minimization of the strain energy of the nanoparticles placed in proximity of the surface of the matrix. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available