4.4 Article

Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nima.2010.12.013

Keywords

Bismuth tri-iodide; Radiation detection; Gamma-ray spectroscopy

Funding

  1. DOD, Defense Threat Reduction Agency [HDTRA-1-07-1-0013]
  2. National Science Foundation

Ask authors/readers for more resources

Bismuth tri-iodide is a wide band-gap semiconductor material that may be able to operate as a radiation detector without any cooling mechanism. This material has a higher effective atomic number than germanium and CdZnTe, and thus should have a higher gamma-ray detection efficiency, particularly for moderate and high energy gamma-rays. Unfortunately, not much is known about bismuth tri-iodide, and the general properties of the material need to be investigated. Bismuth tri-iodide does not suffer from some of the material issues, such as a solid state phase transition and dissociation in air, that mercuric iodide (another high-Z, wide band-gap semiconductor) does. Thus, bismuth tri-iodide is both easier to grow and handle than mercuric iodide. A modified vertical Bridgman growth technique is being used to grow large, single bismuth tri-iodide crystals. Zone refining is being performed to purify the starting material and increase the resistivity of the crystals. The single crystals being grown are typically several hundred mm(3). The larger crystals grown are approximately 2 cm(3). Initial detectors are being fabricated using both gold and palladium electrodes and palladium wire. The electron mobility measured using an alpha source was determined to be 260 +/- 50 cm(2)/Vs. An alpha spectrum was recorded with one of the devices; however the detector appears to suffer from polarization. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available